데이터 엔지니어링(38)
-
데이터 엔지니어링 위클리 #2 | Data Lineage, SQLMesh, DBT, Synthetic Data
ArticlesLLM as a Judge를 활용한 CodeBuddy 성능 평가LLM을 활용한 자동화된 코드 리뷰 평가 방식인 LLM as a Judge를 CodeBuddy에 적용하여, 코드 변경 사항을 신속하고 일관되게 분석하는 방법을 실험했습니다. 이를 통해 평가 자동화의 가능성을 확인했으나, 자기 편향(Self Bias), 장황 편향(Verbosity Bias), 위치 편향(Position Bias) 등 다양한 한계를 발견하고 이를 완화하기 위한 전략을 모색했습니다.PR 기반 코드 리뷰 평가에서 LLM을 활용하여 평가 자동화를 시도함Pointwise, Pairwise, Listwise 평가 방식 비교 및 적용LLM 평가자의 자기 편향 문제 및 이를 해결하기 위한 모델 선정 전략 검토장황 편향을 방지하..
2025.03.11 -
데이터 엔지니어링 위클리 #1 | Medallion Architecture, Trino, LLM
좋은 글Trino로 타임아웃 개선하기 Trino로 타임아웃 개선하기 : NHN Cloud MeetupTrino로 타임아웃 개선하기meetup.nhncloud.comTrino와 OBS를 도입하여 1억 건 이상의 집계 쿼리 실행 시 발생하는 타임아웃 문제를 해결했고, 집계 시간이 43% 단축되며 데이터 보관 기간이 60일에서 1년으로 연장되었지만 약 100만원의 추가 비용이 발생했습니다.집계 쿼리 실행 시 목표 행(row)이 1억 건을 초과하는 문제Trino와 OBS(오브젝트 스토리지) 도입을 통해 해결집계 시간 43% 단축, 데이터 보관 기간 60일에서 1년으로 연장작성자: (NHN) 이태형 클라우드AI팀 SmartThings, OpenSearch 도입으로 성능과 비용 절감 Samsung Tech Blog..
2025.03.05 -
데이터 웨어하우스란?
운영 시스템은 트랜잭션을 신속히 처리하는데 최적화되어있습니다. 데이터 웨어하우스는 신규 고객을 집계하고 월별 GMV를 비교하는 등의 요구사항을 처리할 수 있어야 합니다. 그러기 위해서는 운영 시스템과는 다른 구조가 필요하며 이를 다차원 모델링으로 해결합니다. 데이터 웨어하우스를 활용하는 사람들은 현업에 있는 다양한 직업을 가진 사람들입니다. 그래서 구축을 할 때는 기술보다 비즈니스 이슈를 중심으로 생각해야 합니다. 데이터 웨어하우스 구축을 위한 요구사항은 다음과 같습니다. 정보에 쉽게 접근 가능하도록 만들어야 한다. 의사결정을 위해 신뢰할 수 있는 토대가 되어야 하며 일관된 정보를 제공해야 한다. (데이터 신뢰성) 시스템 변화에 유연해야 한다. 정보를 적시에 제공해야 한다. (데이터 최신성) 현업에서 사..
2024.02.20 -
데이터 레이크하우스의 개념
(Data lakehouse in action의 1, 2장을 요약한 글입니다.) Data Lakehouse in Action - 저자 Pradeep Menon 출판 Packt Publishing 출판일 2022.03.17 1. 데이터 분석 패턴의 진화 엔터프라이즈 데이터 웨어하우스(EDW) 시대 EDW 시대가 시작된 배경은 다음과 같았습니다. 분석은 리포팅과 같은 말이었습니다. 데이터베이스 구조를 리포팅하는데 최적화하는 것이 최우선 목표였습니다. Ralph Kimball, Bill Inmon에 의해 1990, 2000년대에 활성화되었습니다. EDW의 패턴은 다음과 같았습니다. Flat Files, Databases -> ETL -> EDW -> Data Marts -> BI EDW는 오랜 시간동안 자리를..
2024.01.15 -
[Delta Lake] 데이터 레이크하우스: 소개 및 예시
Delta Lake는 데이터 레이크 위에 Lakehouse 아키텍처를 구축할 수 있는 오픈소스 프로젝트이다. 데이터 레이크의 문제점과 데이터 웨어하우스의 문제점을 보완해줄 수 있다. 데이터 레이크는 아주 큰 데이터를 저장할 수 있지만 체계가 정확하게 잡히지 않으면 데이터 늪이 되기가 쉽다. S3와 같은 클라우드 스토리지는 가장 비용 효율적인 스토리지 시스템이다. 그러나 key-value로 구현이 되어있어서 ACID 트랜잭션과 같은 고성능을 구현하기는 어렵다. listing object와 같은 메타데이터 동작은 비싸며 일관성 보장은 제한적이다. 델타레이크는 이런 문제점을 보완할 수 있다. ACID 성질을 가질 수 있게 하여 트랜잭션을 구현하며, 테이블에서의 시간 여행을 가능하게 한다. upsert를 구현할..
2022.02.07 -
[Trino] 트리노(프레스토) 기본 개념 이해 및 사용하기
About 트리노는 빅데이터를 쿼리하기 위한 분산 SQL 쿼리 엔진이다. 기존에는 HDFS를 쿼리하도록 설계되었지만 지금은 그것에만 국한되지 않는다. Trino라는 이름은 Presto라는 이름을 리브랜딩 한 것으로 같은 쿼리 엔진이다. 트리노는 범용 데이터베이스가 아니기 때문에 MySQL과 같이 OLTP(Online Transaction Processing)가 아닌 OLAP(Online Analytics Processing)로 설계되었다. Concepts Server types 트리노는 두 가지의 서버 타입이 있다. 하나는 Coordinator로 다른 하나는 Worker이다. 이름과 같이 Coordinator는 구문 분석, 쿼리 계획, 작업자 노드 관리와 같은 일을 하고 Worker는 실제 작업을 실행하..
2022.02.04