데이터 엔지니어링(48)
-
[Delta Lake] 데이터 레이크하우스: 소개 및 예시
Delta Lake는 데이터 레이크 위에 Lakehouse 아키텍처를 구축할 수 있는 오픈소스 프로젝트이다. 데이터 레이크의 문제점과 데이터 웨어하우스의 문제점을 보완해줄 수 있다. 데이터 레이크는 아주 큰 데이터를 저장할 수 있지만 체계가 정확하게 잡히지 않으면 데이터 늪이 되기가 쉽다. S3와 같은 클라우드 스토리지는 가장 비용 효율적인 스토리지 시스템이다. 그러나 key-value로 구현이 되어있어서 ACID 트랜잭션과 같은 고성능을 구현하기는 어렵다. listing object와 같은 메타데이터 동작은 비싸며 일관성 보장은 제한적이다. 델타레이크는 이런 문제점을 보완할 수 있다. ACID 성질을 가질 수 있게 하여 트랜잭션을 구현하며, 테이블에서의 시간 여행을 가능하게 한다. upsert를 구현할..
2022.02.07 -
[Trino] 트리노(프레스토) 기본 개념 이해 및 사용하기
About 트리노는 빅데이터를 쿼리하기 위한 분산 SQL 쿼리 엔진이다. 기존에는 HDFS를 쿼리하도록 설계되었지만 지금은 그것에만 국한되지 않는다. Trino라는 이름은 Presto라는 이름을 리브랜딩 한 것으로 같은 쿼리 엔진이다. 트리노는 범용 데이터베이스가 아니기 때문에 MySQL과 같이 OLTP(Online Transaction Processing)가 아닌 OLAP(Online Analytics Processing)로 설계되었다. Concepts Server types 트리노는 두 가지의 서버 타입이 있다. 하나는 Coordinator로 다른 하나는 Worker이다. 이름과 같이 Coordinator는 구문 분석, 쿼리 계획, 작업자 노드 관리와 같은 일을 하고 Worker는 실제 작업을 실행하..
2022.02.04 -
[Apache Parquet] 공식 문서로 파케이 이해하기
개발 동기 우리는 어떤 하둡 에코시스템에도 사용할 수 있고 압축과 컬럼 기반 데이터 표현의 이점을 만들기 위해 Parquet를 개발했습니다. Parquet는 처음부터 중첩된(nested) 데이터 구조를 위해 개발되었으며, Dremel의 논문에 작성된 record shredding and assembly algorithm을 사용합니다. 우리는 이 접근 방식이 중첩된 name space를 단순하게 붙이는 것보다 좋다고 믿고 있습니다. https://github.com/julienledem/redelm/wiki/The-striping-and-assembly-algorithms-from-the-Dremel-paper Parquet는 효율적인 압축과 인코딩 체계를 지원하도록 개발되었습니다. 여러 프로젝트에서 데이..
2022.01.20 -
[Apache Thrift] 아파치 쓰리프트 간단하게 이해하기
개요 아파치 쓰리프트는 페이스북에서 서로 다른 언어간의 통신을 위하여 개발되었다. 원격 프로시저 호출(Remote Procedure Call)로 언어에 상관 없이 서로 통신할 수 있도록 도와준다. 예를 들면 PHP에서 작성한 기능을 파이썬과 Go언어에서 자유롭게 호출해서 사용할 수 있다. 단순히 하나의 함수 호출이 아니라, REST API 서버처럼 자유롭게 개발을 할 수 있다. thrift와 호환되는 언어들은 모두 비슷하지만 각자 다른 인터페이스 정의 규칙을 가지고 있다. 아파치 쓰리프트에서는 .thrift 파일에 변수의 타입과 이름 그리고 함수의 매개변수, 반환값과 예외 등의 정의를 하고, thrift를 사용하여 옵션으로 변환하려는 언어를 적어주면 .thrift 파일에 입력된 정의로 각 언어에 맞게 코..
2022.01.20 -
[🔥Spark] java.lang.AssertionError: assertion failed: Concurrent update to the log. Multiple streaming jobs detected 해결방법
에러 메세지 java.lang.AssertionError: assertion failed: Concurrent update to the log. Multiple streaming jobs detected for 53 at scala.Predef$.assert(Predef.scala:223) 원인 로그에 대한 동시 업데이트, 여러 스트리밍 작업이 발견되었습니다. 스파크 스트리밍에서 동일한 체크포인트를 사용하는 두 개의 싱크 작업(writeStream)이 동시에 실행되면 발생하는 문제이다. checkpointLocation을 다른 위치로 사용하면 해결할 수 있다. Zeppelin에서 코드를 실행하고 같은 스트리밍 스크립트를 사용할 때 오류가 발생할 수 있다. 기존 같은 location을 사용한다. 동시에 같..
2021.11.04 -
[🔥Spark] StreamingQueryException: Cannot find earliest offsets of Set(topic-name-0)
전체 에러 메세지 StreamingQueryException: Cannot find earliest offsets of Set(topic-name-0). Some data may have been missed. Some data may have been lost because they are not available in Kafka any more; either the data was aged out by Kafka or the topic may have been deleted before all the data in the topic was processed. If you don't want your streaming query to fail on such cases, set the source opt..
2021.11.02